Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Dev Neurosci ; 84(2): 154-159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296839

RESUMO

OBJECTIVE: Schizophrenia belongs to a severe mental illness with complicated clinical presentations, an ill-defined pathogenesis, and no known cause. Many genetic studies imply that polygenic interaction is important in the development of schizophrenia. The main mechanism of the RELN-BDNF-CREB-DNMT signaling pathway in neurodevelopment involves RELN, brain-derived neurotrophic factor (BDNF), transcription factor cyclic adenosine monophosphate response element binding protein (CREB), DNA methyltransferase 1 (DNMT1), as well as DNA methyltransferase 3B (DNMT3B). An early case-control research on 15 polymorphisms in the RELN, CREB, BDNF, DNMT1, and DNMT3B genes was done. A single gene variation has little effect on the pathogenesis of schizophrenia, but the combination of intergenic variation loci has a bigger impact because schizophrenia is a complex polygenic disorder. The objective of the current study sought to explore the impact of genetic interactions between RELN, BDNF, CREB, DNMT1, and DNMT3B on schizophrenia in order to further highlight the genetic factors influencing the risk of schizophrenia. METHODS: Taking the case-control study design, with the Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) to be the evaluation norm, 134 individuals suffering from schizophrenia hospitalized in the Third People's Hospital of Zhongshan City within January 2018 to April 2020 (case group) were selected, and 64 healthy individuals (control group) from the same geographical area had been chosen as well. MassArray identified DNMT1 gene single nucleotide polymorphisms (rs2114724 and rs2228611) and DNMT3B gene SNPs (rs2424932, rs1569686, rs6119954, and rs2424908). Using the generalized multifactor dimensionality reduction (GMDR), the RELN-BDNF-CREB-DNMT pathway's gene interactions were examined for their impact on schizophrenia. RESULTS: GMDR analysis showed that the three-order interaction model RELN (rs2073559, rs2229864)-DNMT3B (rs2424908) was the optimal model (p = 0.001), with the consistency of cross-validation of 10/10 and the test accuracy of 0.8711. CONCLUSION: The interaction between the RELN (rs2073559, rs2229864)-DNMT3B (rs2424908) may be related to schizophrenia, and large sample sizes should be verified in different population.


Assuntos
60603 , Predisposição Genética para Doença , Proteína Reelina , Esquizofrenia , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Estudos de Casos e Controles , DNA (Citosina-5-)-Metiltransferases/genética , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Transdução de Sinais , Proteína Reelina/genética , 60603/genética
2.
Anim Genet ; 54(5): 632-636, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37334487

RESUMO

Cerebellar hypoplasia is a heterogeneous neurological condition in which the cerebellum is smaller than usual or not completely developed. The condition can have genetic origins, with Mendelian-effect mutations described in several mammalian species. Here, we describe a genetic investigation of cerebellar hypoplasia in White Swiss Shepherd dogs, where two affected puppies were identified from a litter with a recent common ancestor on both sides of their pedigree. Whole genome sequencing was conducted for 10 dogs in this family, and filtering of these data based on a recessive transmission hypothesis highlighted five protein-altering candidate variants - including a frameshift-deletion of the Reelin (RELN) gene (p.Val947*). Given the status of RELN as a gene responsible for cerebellar hypoplasia in humans, sheep and mice, these data strongly suggest the loss-of-function variant as underlying these effects. This variant has not been found in other dog breeds nor in a cohort of European White Swiss Shepherds, suggesting a recent mutation event. This finding will support the genotyping of a more diverse sample of dogs, and should aid future management of the harmful allele through optimised mating schemes.


Assuntos
Doenças do Cão , Proteína Reelina , Animais , Cães , Humanos , Cerebelo/anormalidades , Doenças do Cão/genética , Mutação da Fase de Leitura , Mamíferos , Mutação , Deleção de Sequência , Suíça , Proteína Reelina/genética
3.
Cells ; 11(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36497098

RESUMO

Remarkable clinical benefits in several advanced cancers are observed under the treatment of immune checkpoint inhibitor (ICI) agents. However, only a smaller proportion of patients respond to the treatments. Reelin (RELN) is frequently mutated in the cancer genome. In this study, the RELN mutation association with ICI treatment efficacy in melanoma and non-small cell lung cancer (NSCLC) was elucidated. Data from 631 melanoma and 109 NSCLC patients with both ICI treatment data and pre-treatment mutational profiles were collected. In addition, from the Cancer Genome Atlas (TCGA) project, we also obtained both tumors to explore the immunologic features behind RELN mutations. Melanoma patients with RELN mutations exhibited a favorable ICI survival benefit when compared with wild-type patients (HR: 0.66, 95% CI: 0.51-0.87, p = 0.003). A higher response rate was also noticed in RELN-mutated patients (38.9% vs. 28.3%, p = 0.017). The association of RELN mutations with a preferable immunotherapy outcome and response was further confirmed in NSCLC. Further exploration demonstrated that favorable immunocyte infiltration and immune response signaling pathways were found in patients with RELN mutations. In this study, RELN mutations were identified to connect with a better immune microenvironment and an improved ICI efficacy in melanoma and NSCLC, which provides a potential biomarker for immunological feature evaluation and immunotherapeutic outcome prediction at the molecular level.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Proteína Reelina , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Mutação/genética , Microambiente Tumoral , Proteína Reelina/genética
4.
Proc Natl Acad Sci U S A ; 119(37): e2120079119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067316

RESUMO

The extracellular protein Reelin, expressed by Cajal-Retzius (CR) cells at early stages of cortical development and at late stages by GABAergic interneurons, regulates radial migration and the "inside-out" pattern of positioning. Current models of Reelin functions in corticogenesis focus on early CR cell-derived Reelin in layer I. However, developmental disorders linked to Reelin deficits, such as schizophrenia and autism, are related to GABAergic interneuron-derived Reelin, although its role in migration has not been established. Here we selectively inactivated the Reln gene in CR cells or GABAergic interneurons. We show that CR cells have a major role in the inside-out order of migration, while CR and GABAergic cells sequentially cooperate to prevent invasion of cortical neurons into layer I. Furthermore, GABAergic cell-derived Reelin compensates some features of the reeler phenotype and is needed for the fine tuning of the layer-specific distribution of cortical neurons. In the hippocampus, the inactivation of Reelin in CR cells causes dramatic alterations in the dentate gyrus and mild defects in the hippocampus proper. These findings lead to a model in which both CR and GABAergic cell-derived Reelin cooperate to build the inside-out order of corticogenesis, which might provide a better understanding of the mechanisms involved in the pathogenesis of neuropsychiatric disorders linked to abnormal migration and Reelin deficits.


Assuntos
Córtex Cerebral , Proteínas do Tecido Nervoso , Neurônios , Proteína Reelina , Animais , Movimento Celular , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Neurônios GABAérgicos/enzimologia , Hipocampo/embriologia , Hipocampo/enzimologia , Interneurônios/enzimologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/enzimologia , Proteína Reelina/genética , Proteína Reelina/metabolismo
5.
Neurobiol Aging ; 119: 67-76, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35977442

RESUMO

The APOE-ε4 allele is known to predispose to amyloid deposition and consequently is strongly associated with Alzheimer's disease (AD) risk. There is debate as to whether the APOE gene accounts for all genetic variation of the APOE locus. Another question which remains is whether APOE-ε4 carriers have other genetic factors influencing the progression of amyloid positive individuals to AD. We conducted a genome-wide association study in a sample of 5,390 APOE-ε4 homozygous (ε4ε4) individuals (288 cases and 5102 controls) aged 65 or over in the UK Biobank. We found no significant associations of SNPs in the APOE locus with AD in the sample of ε4ε4 individuals. However, we identified a novel genome-wide significant locus associated to AD, mapping to DAB1 (rs112437613, OR = 2.28, CI = 1.73-3.01, p = 5.4 × 10-9). This identification of DAB1 led us to investigate other components of the DAB1-RELN pathway for association. Analysis of the DAB1-RELN pathway indicated that the pathway itself was associated with AD, therefore suggesting an epistatic interaction between the APOE locus and the DAB1-RELN pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Doença de Alzheimer , Apolipoproteína E4 , Proteínas do Tecido Nervoso , Proteína Reelina , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Estudo de Associação Genômica Ampla , Genótipo , Homozigoto , Humanos , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único/genética , Proteína Reelina/genética , Transdução de Sinais
6.
PLoS One ; 17(6): e0269558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35658052

RESUMO

Otosclerosis (OTSC) is the primary form of conductive hearing loss characterized by abnormal bone remodelling within the otic capsule of the human middle ear. A genetic association of the RELN SNP rs3914132 with OTSC has been identified in European population. Previously, we showed a trend towards association of this polymorphism with OTSC and identified a rare variant rs74503667 in a familial case. Here, we genotyped these variants in an Indian cohort composed of 254 OTSC cases and 262 controls. We detected a significant association of rs3914132 with OTSC (OR = 0.569, 95%CI = 0.386-0.838, p = 0.0041). To confirm this finding, we completed a meta-analysis which revealed a significant association of the rs3914132 polymorphism with OTSC (Z = 6.707, p<0.0001) across different ethnic populations. Linkage analysis found the evidence of linkage at RELN locus (LOD score 2.1059) in the OTSC family which has shown the transmission of rare variant rs74503667 in the affected individuals. To understand the role of RELN and its receptors in the development of OTSC, we went further to perform a functional analysis of RELN/reelin. Here we detected a reduced RELN (p = 0.0068) and VLDLR (p = 0.0348) mRNA levels in the otosclerotic stapes tissues. Furthermore, a reduced reelin protein expression by immunohistochemistry was confirmed in the otosclerotic tissues. Electrophoretic mobility shift assays for rs3914132 and rs74503667 variants revealed an altered binding of transcription factors in the mutated sequences which indicates the regulatory role of these variations in the RELN gene regulation. Subsequently, we showed by scanning electron microscopy a change in stapes bone morphology of otosclerotic patients. In conclusion, this study evidenced that the rare variation rs74503667 and the common polymorphism rs3914132 in the RELN gene and its reduced expressions that were associated with OTSC.


Assuntos
Otosclerose , Proteína Reelina/genética , Predisposição Genética para Doença , Genótipo , Humanos , Otosclerose/genética , Polimorfismo de Nucleotídeo Único
7.
Brain ; 145(9): 3274-3287, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35769015

RESUMO

Reelin, a large extracellular protein, plays several critical roles in brain development and function. It is encoded by RELN, first identified as the gene disrupted in the reeler mouse, a classic neurological mutant exhibiting ataxia, tremors and a 'reeling' gait. In humans, biallelic variants in RELN have been associated with a recessive lissencephaly variant with cerebellar hypoplasia, which matches well with the homozygous mouse mutant that has abnormal cortical structure, small hippocampi and severe cerebellar hypoplasia. Despite the large size of the gene, only 11 individuals with RELN-related lissencephaly with cerebellar hypoplasia from six families have previously been reported. Heterozygous carriers in these families were briefly reported as unaffected, although putative loss-of-function variants are practically absent in the population (probability of loss of function intolerance = 1). Here we present data on seven individuals from four families with biallelic and 13 individuals from seven families with monoallelic (heterozygous) variants of RELN and frontotemporal or temporal-predominant lissencephaly variant. Some individuals with monoallelic variants have moderate frontotemporal lissencephaly, but with normal cerebellar structure and intellectual disability with severe behavioural dysfunction. However, one adult had abnormal MRI with normal intelligence and neurological profile. Thorough literature analysis supports a causal role for monoallelic RELN variants in four seemingly distinct phenotypes including frontotemporal lissencephaly, epilepsy, autism and probably schizophrenia. Notably, we observed a significantly higher proportion of loss-of-function variants in the biallelic compared to the monoallelic cohort, where the variant spectrum included missense and splice-site variants. We assessed the impact of two canonical splice-site variants observed as biallelic or monoallelic variants in individuals with moderately affected or normal cerebellum and demonstrated exon skipping causing in-frame loss of 46 or 52 amino acids in the central RELN domain. Previously reported functional studies demonstrated severe reduction in overall RELN secretion caused by heterozygous missense variants p.Cys539Arg and p.Arg3207Cys associated with lissencephaly suggesting a dominant-negative effect. We conclude that biallelic variants resulting in complete absence of RELN expression are associated with a consistent and severe phenotype that includes cerebellar hypoplasia. However, reduced expression of RELN remains sufficient to maintain nearly normal cerebellar structure. Monoallelic variants are associated with incomplete penetrance and variable expressivity even within the same family and may have dominant-negative effects. Reduced RELN secretion in heterozygous individuals affects only cortical structure whereas the cerebellum remains intact. Our data expand the spectrum of RELN-related neurodevelopmental disorders ranging from lethal brain malformations to adult phenotypes with normal brain imaging.


Assuntos
Lisencefalia , Proteína Reelina , Adulto , Cerebelo/anormalidades , Criança , Deficiências do Desenvolvimento/genética , Humanos , Lisencefalia/complicações , Mutação , Malformações do Sistema Nervoso , Proteína Reelina/genética
8.
J Int Med Res ; 50(5): 3000605221100345, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35638503

RESUMO

OBJECTIVE: To explore the association between CpG island methylation in the promoter region of RELN and positive (type I) and negative (type II) types of schizophrenia, and investigate serum interleukin (IL)-1ß, IL-6, and myelin basic protein (MBP) in schizophrenia. METHODS: Levels of CpG island methylation in the promoter region of RELN were detected in peripheral blood of patients with schizophrenia (experimental group) and healthy individuals (control group), and serum IL-1ß, IL-6, and MBP were measured. RESULTS: The positive rate of CpG island methylation in the promoter region of RELN was higher in the experimental group than in the control group; however, there were no significant differences between type I and II patients. There were differences in Positive and Negative Syndrome Scale (PANSS) scores and serum IL-1ß, IL-6, and MBP between type I and II patients. Furthermore, there were positive correlations between serum IL-1ß, IL-6, and MBP and PANSS scores (negative symptoms) in type II patients. CONCLUSION: CpG island methylation in the promoter region of RELN was associated with schizophrenia, but not with its clinical type. There may be different pathological mechanisms in type I and II schizophrenia, and type II schizophrenia may be associated with serum IL-1ß, IL-6, and MBP.


Assuntos
Metilação de DNA , Proteína Reelina , Esquizofrenia , Ilhas de CpG , Humanos , Interleucina-6 , Regiões Promotoras Genéticas , Proteína Reelina/genética , Esquizofrenia/genética , Esquizofrenia/patologia
9.
Neuroscience ; 494: 38-50, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569645

RESUMO

Although temperament has been regarded as an innate aspect of human personality, its association with proteins involved in embryonic development is unclear. Reelin, encoded by RELN, plays an important role in brain development. Herein, we investigated the association between the RELN rs7341475 (G/A) single nucleotide polymorphism, detected as a female-specific risk factor for schizophrenia, brain structure, and temperament to elucidate the role of RELN in the development of human personality. In this study, 1580 healthy young Japanese adults were genotyped for RELN rs7341475 and completed the Temperament and Character Inventory. Whole-brain analysis of covariance was conducted to investigate differences between genotypes in regional gray matter volume (rGMV) and cortical morphology. Additionally, multiple regression analysis was performed to examine the association of four temperaments with rGMV. Those statistical analyses were performed separately for males and females. Individuals with G/G homozygosity showed significantly greater rGMV in several areas of the brain, particularly the bilateral cingulate and temporal gyrus, as well as a larger value of fractal dimension in the left lateral occipital cortex. Furthermore, of the four temperaments, the novelty seeking was significantly and positively associated with rGMV in the right superior temporal gyrus, partially overlapping with areas where differences between the rs7341475 genotypes were detected. The above findings were detected only in females, but not in males. This is the first study to demonstrate the contribution of RELN rs7341475 to differences in brain structure in Japanese females, which may indicate vulnerability to schizophrenia and variations in human personality.


Assuntos
Encéfalo , Proteína Reelina , Adulto , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Japão , Masculino , Proteína Reelina/genética
10.
Mol Biol Rep ; 49(7): 6019-6028, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35403940

RESUMO

INTRODUCTION: Autism spectrum disorder (ASD) is an increasing concern among the Iraqi Arab population. The genetic alterations that cause ASD are likely to converge at the synapse. This study investigated polymorphisms in the GABAA receptor subunit (GABRG3) and the RELN gene as putative biomarkers of ASD in a pediatric population in Iraq. METHODS: The case control study included 60 patients with a clinical diagnosis of ASD (mild, moderate, or severe) according to DSM-IV criteria and matched healthy controls (n = 60). Blood samples were collected for DNA genotyping of SNPs rs736707 and rs208129 for RELN and GABRG3 using allele specific PCR. Assessment of genotype and allele distributions in patient groups used odd ratios (OR) with 95% confidence intervals and the Chi-square test. All statistical analysis was performed used SPSS software. RESULT: The patient cohort was highly consanguineous, with increased ratio (p > 0.05) of males to females (3:1) in both ASD (mean age, 6.66 ± 3.05) and controls (mean age, 5.76 ± 2.3). Both GABRG3 rs208129 genotypes TT (OR 4.33, p = 0.0015) and TA (OR 0.259, P = 0.008), and the T and A alleles were significantly associated with ASD. The RELN rs736707 TC genotype (OR 2.626, P = 0.034) was the only significant association with ASD. CONCLUSION: GABRG3 SNP rs208129 is a leading biomarker to predict genetic vulnerability to ASD in Iraqi Arabs. Expanded SNP panels and increased sample sizes are required for future GABRG3 studies, and to reach a consensus on RELN utility. Future ASD screening programs in Iraq should include genetic metrics in addition to clinical phenotype assessments.


Assuntos
Transtorno do Espectro Autista , Proteína Reelina/genética , Árabes/genética , Transtorno do Espectro Autista/genética , Estudos de Casos e Controles , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/genética , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Iraque , Masculino , Proteínas do Tecido Nervoso/genética , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , Receptores de GABA-A/genética , Serina Endopeptidases/genética
11.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35163751

RESUMO

Reelin is an extracellular matrix protein that is mainly produced in Cajal-Retzius cells and controls neuronal migration, which is important for the proper formation of cortical layers in the developmental stage of the brain. In the adult brain, Reelin plays a crucial role in the regulation of N-methyl-D-aspartate receptor-dependent synaptic function, and its expression decreases postnatally. Clinical studies showed reductions in Reelin protein and mRNA expression levels in patients with psychiatric disorders; however, the causal relationship remains unclear. Reelin-deficient mice exhibit an abnormal neuronal morphology and behavior, while Reelin supplementation ameliorates learning deficits, synaptic dysfunctions, and spine loss in animal models with Reelin deficiency. These findings suggest that the neuronal deficits and brain dysfunctions associated with the down-regulated expression of Reelin are attenuated by enhancements in its expression and functions in the brain. In this review, we summarize findings on the role of Reelin in neuropsychiatric disorders and discuss potential therapeutic approaches for neuropsychiatric disorders associated with Reelin dysfunctions.


Assuntos
Transtornos Mentais/metabolismo , Proteína Reelina/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Aprendizagem , Transtornos Mentais/tratamento farmacológico , Camundongos , Terapia de Alvo Molecular , Proteína Reelina/genética
12.
Bioengineered ; 13(2): 2272-2284, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35034536

RESUMO

A growing body of research has illuminated that non-coding RNAs (ncRNAs) plays an important role in the development of drug resistance in hepatocellular carcinoma (HCC) cells. The expression profiles of differential expressed genes (DEGs) and ncRNAs related to the sorafenib resistance in HCC cells were analyzed according to the Gene Expression Omnibus (GEO) dataSets and The Cancer Genome Atlas (TCGA) datasets. Bioinformatics technology was used to construct the interaction network of DEGs and ncRNAs. Cell transfection, dual-luciferase reporter assay, Western blot, cell counting kit-8 (CCK-8), flow cytometry and quantitative real-time polymerase chain reaction(qRT-PCR) were used to study the mechanism of sorafenib resistance in HepG2 cells and Huh-7 cells. The expression of reelin (RELN) and secretagogin (SCGN) were the only down-regulated in sorafenib-resistant HCC cells. The results showed that RELN gene demethylation reversed the cytotoxic of sorafenib on HepG2 cells and Huh-7 cells. Hsa_circRNA_102049 over-expression promoted the sensitivity of HepG2 cells and Huh-7 cells to sorafenib, hsa_circRNA_102049 up-regulated the expression of RELN gene by sponging hsa-miR-214-3p. The resistance to sorafenib in RELN knockout HepG2 cells and Huh-7 cells could be reverted by has-circRNA_102049. These findings support targeting of hsa_circRNA_102049 and RELN in sorafenib-treated HCC cells as a novel intervention, which is expected to overcome sorafenib resistance of HCC cells.


Assuntos
Carcinoma Hepatocelular/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/biossíntese , RNA Neoplásico/metabolismo , Proteína Reelina/biossíntese , Sorafenibe/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Proteínas de Neoplasias/genética , RNA Circular , RNA Neoplásico/genética , Proteína Reelina/genética
13.
Mol Biol Rep ; 49(3): 2283-2292, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35040003

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a polygenic, and highly prevalent disorder affecting 322 million people globally. It results in several psychological changes which adversely affect different dimensions of life and may lead to suicide. METHODS: Whole exome sequencing of 15 MDD patients, enrolled at the Dr. A. Q. Khan Institute of Behavioral Sciences, Karachi, was performed using NextSeq500. Different bioinformatics tools and databases like ANNOVAR, ALoFT, and GWAS were used to identify both common and rare variants associated with the pathogenesis of MDD. RESULTS: A total of 1985 variations were identified in 479 MDD-related genes. Several SNPs including rs1079610, rs11750538, rs1799913, rs1801131, rs2230267, rs2231187, rs3819976, rs4314963, rs56265970, rs587780434, rs6330, rs75111588, rs7596487, and rs9624909 were prioritized due to their deleteriousness and frequency difference between the patients and the South Asian population. A non-synonymous variation rs56265970 (BCR) had 26% frequency in patients and was not found in the South Asian population; a multiallelic UTR-5' insertion rs587780434 (RELN) was present with an allelic frequency of 70% in patients whereas 22% in the SAS population. Genetic alterations in PABPC1 genes, a stress-associated gene also had higher allele frequency in the cases than in the normal population. CONCLUSION: This present study identifies both common and rare variants in the genes associated with the pathogenesis of MDD in Pakistani patients. Genetic variations in BCR, RELN, and stress-associated PABPC1 suggest potential roles in the pathogenesis of MDD.


Assuntos
Transtorno Depressivo Maior , Proteína I de Ligação a Poli(A)/genética , Proteínas Proto-Oncogênicas c-bcr/genética , Proteína Reelina/genética , Povo Asiático , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/patologia , Predisposição Genética para Doença , Humanos , Paquistão , Polimorfismo de Nucleotídeo Único/genética
14.
F1000Res ; 11: 1183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37881513

RESUMO

Background: Reelin has fundamental functions in the developing and mature brain. Its absence gives rise to the Reeler phenotype in mice, the first described cerebellar mutation. In homozygous mutants missing the Reelin gene ( reln -/-), neurons are incapable of correctly positioning themselves in layered brain areas such as the cerebral and cerebellar cortices. We here demonstrate that by employing ex vivo cultured cerebellar slices one can reduce the number of animals and use a non-recovery procedure to analyze the effects of Reelin on the migration of Purkinje neurons (PNs). Methods: We generated mouse hybrids (L7-GFP relnF1/) with green fluorescent protein (GFP)-tagged PNs, directly visible under fluorescence microscopy. We then cultured the slices obtained from mice with different reln genotypes and demonstrated that when the slices from reln -/- mutants were co-cultured with those from reln +/- mice, the Reelin produced by the latter induced migration of the PNs to partially rescue the normal layered cortical histology. We have confirmed this observation with Voronoi tessellation to analyze PN dispersion. Results: In images of the co-cultured slices from reln -/- mice, Voronoi polygons were larger than in single-cultured slices of the same genetic background but smaller than those generated from slices of reln +/- animals. The mean roundness factor, area disorder, and roundness factor homogeneity were different when slices from reln -/- mice were cultivated singularly or co-cultivated, supporting mathematically the transition from the clustered organization of the PNs in the absence of Reelin to a layered structure when the protein is supplied ex vivo. Conclusions: Neurobiologists are the primary target users of this 3Rs approach. They should adopt it for the possibility to study and manipulate ex vivo the activity of a brain-secreted or genetically engineered protein (scientific perspective), the potential reduction (up to 20%) of the animals used, and the total avoidance of severe surgery (3Rs perspective).


Assuntos
Moléculas de Adesão Celular Neuronais , Proteínas da Matriz Extracelular , Proteína Reelina , Animais , Camundongos , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Cerebelo , Técnicas de Cocultura , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteína Reelina/genética
15.
Neurol Res ; 44(3): 262-267, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34569441

RESUMO

OBJECTIVES: Genetic factors play an important role in the onset of epilepsy, and the involvement of the RELN gene was recently discovered. This paper reports a family with a history of epilepsy caused by a heterozygous missense mutation in the RELN gene. METHODS: After a clear diagnosis was made in the proband with a family history of epilepsy, gene sequencing was performed on the proband and his family members. RESULTS: The proband was a 19-year-old male who presented with general convulsions during sleep lasting for about 1 min and was relieved spontaneously. His father and grandmother also experienced seizures. The gene sequencing results of the proband, his mother, and his grandmother showed that both the proband and his grandmother carried the same heterozygous missense mutation in the RELN gene (c.7909 C > T), unlike the proband's mother. DISCUSSION: Mutations in the RELN gene can lead to the occurrence of benign epilepsy, though the specific type of seizures that it can cause is still unclear, and may increase the susceptibility to epilepsy. In addition, it may have potential anticancer effects.


Assuntos
Epilepsia/genética , Proteína Reelina/genética , Adulto , Idoso , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Adulto Jovem
16.
Behav Brain Res ; 416: 113569, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34499931

RESUMO

The Reelin gene (RELN) encodes a large extracellular protein, which has multiple roles in brain development and adult brain function. It activates a series of neuronal signal transduction pathways in the adult brain that function in synaptic plasticity, dendritic morphology, and cognitive function. To further investigate the roles of Reln in brain function, we generated a mouse line using the C57BL/6 J strain with the specific Reln deletion identified from a Japanese patient with schizophrenia (Reln-del mice). These mice exhibited abnormal sociality, but the pathophysiological significance of the Reln deletion for higher brain functions, such as learning and behavioral flexibility remains unclear. In this study, cognitive function in Reln-del mice was assessed using touchscreen-based visual discrimination (VD) and reversal learning (RL) tasks. Reln-del mice showed normal learning in the simple VD task, but the learning was delayed in the complex VD task as compared to their wild-type (WT) littermates. In the RL task, sessions were divided into early perseverative phase (sessions with <50% correct) and later learning phase (sessions with ≥50% correct). Reln-del mice showed normal perseveration but impaired relearning ability in both simple RL and complex RL task as compared to WT mice. These results suggest that Reln-del mice have impaired learning ability, but the behavioral flexibility is unaffected. Overall, the observed behavioral abnormalities in Reln-del mice suggest that this mouse model is a useful preclinical tool for investigating the neurobiological mechanism underlying cognitive impairments in schizophrenia and a therapeutic strategy.


Assuntos
Aprendizagem por Discriminação/fisiologia , Proteína Reelina/genética , Reversão de Aprendizagem/fisiologia , Esquizofrenia/genética , Percepção Visual/genética , Animais , Cognição/fisiologia , Modelos Animais de Doenças , Deleção de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
17.
Pharmacol Res ; 173: 105832, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450306

RESUMO

Reelin, a large extracellular matrix protein, helps to regulate neuronal plasticity and cognitive function. Several studies have shown that Reelin dysfunction, resulting from factors such as mutations in gene RELN or low Reelin expression, is associated with schizophrenia (SCZ). We previously reported that microinjection of Reelin into cerebral ventricle prevents phencyclidine-induced cognitive and sensory-motor gating deficits. However, it remains unclear whether and how Reelin ameliorates behavioral abnormalities in the animal model of SCZ. In the present study, we evaluated the effect of recombinant Reelin microinjection into the medial prefrontal cortex (mPFC) on abnormal behaviors induced by MK-801, an N-methyl-D-aspartate receptor antagonist. Microinjection of Reelin into the mPFC prevented impairment of recognition memory of MK-801-treated mice in the novel object recognition test (NORT). On the other hand, the same treatment had no effect on deficits in sensory-motor gating and short-term memory in the pre-pulse inhibition and Y-maze tests, respectively. To establish the neural substrates that respond to Reelin, the number of c-Fos-positive cells in the mPFC was determined. A significant increase in c-Fos-positive cells in the mPFC of MK-801-treated mice was observed when compared with saline-treated mice, and this change was suppressed by microinjection of Reelin into the mPFC. A K2360/2467A Reelin that cannot bind to its receptor failed to ameliorate MK-801-induced cognitive deficits in NORT. These results suggest that Reelin prevents MK-801-induced recognition memory impairment by acting on its receptors to suppress neural activity in the mPFC of mice.


Assuntos
Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Proteína Reelina/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Células Cultivadas , Maleato de Dizocilpina , Masculino , Transtornos da Memória/induzido quimicamente , Camundongos Endogâmicos C57BL , Microinjeções , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Córtex Pré-Frontal , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Proteínas Recombinantes/administração & dosagem , Proteína Reelina/genética
18.
Genes (Basel) ; 12(7)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34356083

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative diseases. The mechanisms underlying PD remain to be fully elucidated, and research into treatments for this condition is ongoing. Recent advances in genetic research have shed light on the mechanisms underlying PD. In this study, we used PD and control mesenchymal stem cells (MSCs) obtained from adipose tissues to confirm the differences between groups at the cellular and molecular levels. The results revealed that in PD MSCs, cell viability was clearly lower, and the rate of cell senescence was higher compared to the controls. Next, to compare the gene expression in PD and control cells, transcriptome analysis was performed. Genes in pathways, including extracellular matrix (ECM) receptor interaction, P53 signaling, and focal adhesion, were down-regulated in PD. Among genes related to ECM receptor interaction, RELN gene expression was markedly decreased in PD cells; however, after being treated with recombinant Reelin protein, a significant increase in cell viability and a decrease in α-Synuclein aggregation and cell senescence were observed. In conclusion, Reelin affects PD by positively influencing the cell characteristics. Our findings will facilitate research into new treatments for PD.


Assuntos
Senescência Celular , Células-Tronco Mesenquimais/citologia , Modelos Biológicos , Doença de Parkinson/prevenção & controle , Proteína Reelina/metabolismo , Transcriptoma , alfa-Sinucleína/metabolismo , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Técnicas In Vitro , Células-Tronco Mesenquimais/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteína Reelina/genética , alfa-Sinucleína/genética
19.
J Neurosci ; 41(35): 7340-7349, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34290083

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease marked by the accumulation of amyloid-ß (Aß) plaques and neurofibrillary tangles. Aß oligomers cause synaptic dysfunction early in AD by enhancing long-term depression (LTD; a paradigm for forgetfulness) via metabotropic glutamate receptor (mGluR)-dependent regulation of striatal-enriched tyrosine phosphatase (STEP61). Reelin is a neuromodulator that signals through ApoE (apolipoprotein E) receptors to protect the synapse against Aß toxicity (Durakoglugil et al., 2009) Reelin signaling is impaired by ApoE4, the most important genetic risk factor for AD, and Aß-oligomers activate metabotropic glutamate receptors (Renner et al., 2010). We therefore asked whether Reelin might also affect mGluR-LTD. To this end, we induced chemical mGluR-LTD using DHPG (Dihydroxyphenylglycine), a selective mGluR5 agonist. We found that exogenous Reelin reduces the DHPG-induced increase in STEP61, prevents the dephosphorylation of GluA2, and concomitantly blocks mGluR-mediated LTD. By contrast, Reelin deficiency increased expression of Ca2+-permeable GluA2-lacking AMPA receptors along with higher STEP61 levels, resulting in occlusion of DHPG-induced LTD in hippocampal CA1 neurons. We propose a model in which Reelin modulates local protein synthesis as well as AMPA receptor subunit composition through modulation of mGluR-mediated signaling with implications for memory consolidation or neurodegeneration.SIGNIFICANCE STATEMENT Reelin is an important neuromodulator, which in the adult brain controls synaptic plasticity and protects against neurodegeneration. Amyloid-ß has been shown to use mGluRs to induce synaptic depression through endocytosis of NMDA and AMPA receptors, a mechanism referred to as LTD, a paradigm of forgetfulness. Our results show that Reelin regulates the phosphatase STEP, which plays an important role in neurodegeneration, as well as the expression of calcium-permeable AMPA receptors, which play a role in memory formation. These data suggest that Reelin uses mGluR LTD pathways to regulate memory formation as well as neurodegeneration.


Assuntos
Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/fisiologia , Proteínas Tirosina Fosfatases não Receptoras/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Proteína Reelina/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Cálcio/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Indução Enzimática/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Memória/fisiologia , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Degeneração Neural/fisiopatologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Picrotoxina/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Proteínas Recombinantes/metabolismo , Proteína Reelina/deficiência , Proteína Reelina/genética
20.
Kaohsiung J Med Sci ; 37(5): 392-401, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33615686

RESUMO

A range of circular (Circ) RNAs have been demonstrated to be of therapeutic significance for the treatment of acute lymphoblastic leukemia (ALL). Here, we investigated the mechanisms underlying the action of Circ-PRKDC and the microRNA-653-5p/Reelin (miR-653-5p/RELN) axis in T-cell ALL (T-ALL).Clinical specimens were obtained from patients with T-ALL (n = 39) and healthy controls (n = 30). In each specimen, we determined the expression levels of Circ-PRKDC, miR-653-5p, and RELN. Human T-ALL cells (Jurkat) were transfected with Circ-PRKDC- or miR-653-5p-related sequences to investigate cell proliferation, apoptosis, and autophagy. We also determined the levels of Circ-PRKDC, miR-653-5p, RELN, and signaling proteins related to phosphoinositide 3-kinase (PI3K), AKT, and mammalian target of rapamycin (mTOR). Finally, we decoded the interactions between Circ-PRKDC, miR-653-5p, and RELN. The expression levels of Circ-PRKDC and RELN were upregulated in T-ALL tissues and cells while the levels of miR-653-5p were downregulated. Thereafter, then silencing of Circ-PRKDC, or the enforced expression of miR-653-5p, repressed the expression of RELN and the activation of the PI3K/AKT/mTOR signaling pathway, thus enhancing cell autophagy and apoptosis, and disrupting cell proliferation. Circ-PRKDC acted a sponge for miR-653-5p while miR-653-5p targeted RELN. The knockdown of miR-653-5p abrogated the silencing of Circ-PRKDC-induced effects in T-ALL cells. The depletion of Circ-PRKDC elevated miR-653-5p to silence RELN-mediated PI3K/AKT/mTOR signaling activation, thereby enhancing autophagy and apoptosis in T-ALL cells.


Assuntos
Autofagia , Proteína Quinase Ativada por DNA/genética , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/metabolismo , Proteína Reelina/genética , Adolescente , Adulto , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Criança , Feminino , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Células Jurkat , Masculino , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...